

Cell Continuity -is the unbroken succession of cells since life evolved 3.8 billion years ago.

- New cells can only be produced by cell division.
 - New cells are needed for
 - \circ reproduction,
 - o formation of multicellular organisms, and
 - cell replacement.

Cell Cycle

There are three stages of the cell cycle:

- 1. Interphase -The cell grows, proteins are made, the number of organelles increases, DNA replication.
- 2. Division of the Nucleus:
 - **Mitosis**: two daughter nuclei, genetically identical the original nucleus, are formed.
 - **Meiosis**: formation of four haploid genetically different daughter nuclei from the original diploid nucleus.

3. Cytokinesis:

- The cytoplasm divides between the new daughter nuclei.
- Therefore each nucleus with its allocation of cytoplasm becomes a new cell.

Mitosis

All nuclei can undergo mitosis.

- **Haploid** (n): one set of chromosomes is present in the nuclei (i.e. only one of each different chromosome is present.)
- **Diploid** (2n): two sets of chromosomes are present in the nuclei (i.e. two of each different chromosome are present.)

Role of Mitosis

- Formation of a multicellular organism.
- Asexual reproduction e.g. Amoeba, yeast and vegetative reproduction of plant.
- Cell replacement and regeneration.
- Faithful copying of genes and their transfer to the next generation of nuclei or cells.
- Maintains the correct chromosome number of **somatic** (= normal body) cells.

Stages of Mitosis (Interphase); Metaphase, Anaphase, Telophase. (Interphase) (Mnemonic – I Pee MAT)

Prophase

prophase

- chromatin condenses forming chromosomes
- chromosomes shorten, thicken, coil, dehydrate
- each chromosome consists of two identical sister **chromatids**
 - connected at the **centromere**
- **centriole** divides forming the **spindle fibres**
- nuclear envelope breaks down at the end of

Metaphase

- chromosomes placed individually along the equator of the cell
- each chromosome is connected by two sets of spindle fibres attached to the centromeres

Anaphase

- separation of sister chromatids, now termed chromosomes
- the centromeres spit when the spindle fibres shorten
- shortening results in two identical sets of chromosomes at opposite sides of the cell

Telophase

- each chromosome group becomes a nucleus when a nuclear envelope is formed around it
- the chromosomes uncoil to chromatin
 - o chromosomes lengthen, uncoil, rehydrate

Stages of Mitosis	()
Telophase	<
Cytoplasmic division occurs.	Q
8 1861 Reduceds Publishing Concerny (TP	

Definitions

Chromatin: DNA in its 'normal', i.e. functional state — condenses to form chromosomes.

Chromosomes:

- condensed chromatin showing up as a group of short thread-like structures
- only visible with the light microscope in nuclei during mitosis and meiosis
- each chromosome carries a specific set of genes in linear order at particular loci (= sites)

Chromatid:

- often described as 'half a chromosome'
- it is one of two threads of condensed chromatin forming one chromosome
- the two threads are connected together at the centromere after DNA replication (S phase)
- they exist **only** during prophase and metaphase (i.e. *when chromosomes are X-shaped*)

Centromere: a non-DNA region of a chromosome where sister chromatids are held together and spindle fibres attach.

Meiosis

Meiosis: the division of a diploid nucleus to form four haploid genetically different daughter nuclei.

Role of Meiosis

- Increases genetic variation in the population role in evolution
- Makes sexual reproduction possible
- Gamete formation in animals, fungi, protoctista e.g. Man

Site of Meiosis

Animals

- testis forming sperm, the haploid male gametes;
- ovary forming egg cells, the haploid female gametes.

Flowering plants:

- anther of the stamen forming the haploid male spores (microspores),
- ovule of ovary forming the haploid female spores (megaspores).

Mitosis in a Plant Cell

Transition Met to Metaphase

© 1995 Wadsworth Publishing Company/ITP

Anaphase T

2 of 2

© IHW March 2005