Biochemistry

Carbohydrates $\mathbf{C}_{\mathbf{n}}\left(\mathbf{H}_{2} \mathrm{O}_{\mathrm{n}}\right)$

Sugars:
Uses - energy (respiration). Learn to draw diagram (right)
Monosaccharides: $3 \mathrm{C}=$ triose; $5 \mathrm{C}=$ pentose; $6 \mathrm{C}=$ hexose
5-carbon: deoxyribose (DNA), ribose (RNA, ATP)
6-carbon: $\left(C_{6} H_{12} O_{6}\right)$ - α-glucose (G); β-glucose; fructose (F)
Testing: Benedicts; Boil; Blue \rightarrow Brick red;
Joined together with glycosidic bonds (condensation $-\mathrm{H}_{2} \mathrm{O}$)

Disaccharides: $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ - maltose ($2 \times \mathrm{G}$); sucrose $(\mathrm{G}+\mathrm{F})$ - the only non-reducing sugar
Testing: - Boil HCl, add NaOH, then Benedicts; Boil; Blue \rightarrow Brick red (as above)
Polysaccharides: \quad Starch (plants only) $=1 / 3$ amylose ($1: 4 \boldsymbol{\alpha}$ glucose chain);
$2 / 3$ amylopectin ($1: 4 \boldsymbol{\alpha}$ and $1: 6 \boldsymbol{\alpha}$ bonds, so branched)
Testing: - add $\mathrm{I}_{2} / \mathrm{KI}$ solution; yellow/orange \rightarrow blue-black
Glycogen animals, fungi, bacteria: (1:4 α and 1:6 α bonds, so branched)
Uses: energy store - because: not soluble, so no effect on water potential (ψ); not washed away
Compact, lots of energy stored, branched, so easily broken down
Cellulose (plants only) 1:4 $\boldsymbol{\beta}$-glucose chain (X-linked by H-bonds)
Uses: plant cell wall (support) - because: strong in tension, not easily digested (roughage)

Triglycerides (Lipids) $\mathbf{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{6}$

Structure: 1 x glycerol +3 x fatty acids, joined by $\mathbf{3 x}$ ester bonds $\left(-3 \mathrm{x} \mathrm{H}_{2} \mathrm{O}\right)$
Uses - energy store, insulation, waterproofing, membranes
Contains little oxygen, so rich in energy; hydrophobic; NOT a polymer Can be saturated (all C-C bonds e.g. animal fats)
Or unsaturated (includes some $\mathrm{C}=\mathrm{C}$ bonds, e.g. olive oil, cholesterol)
Phospholipids (polar) - with PO_{4} - form bilayers in fluid mosaic membranes
 Phosphate head is hydrophyllic; 2 x fatty acid tails are hydrophobic Testing: shake with warm ethanol; pour into cold water - forms WHITE emulsion

Proteins (CNON+S - in 2 amino-acids ONLY)

Proteins are polymers made of amino-acids (20 different e.g. alanine). Differ only in R-groups.
Joined by peptide bonds $=\mathrm{CONH}\left(-\mathrm{H}_{2} \mathrm{O}\right)$ on ribosomes $(70 \mathrm{~s}$ Prokaryotes, 80s Eukaryotes). Forms dipeptides; polypeptides; active form = proteins Primary $\left(1^{\circ}\right)$ structure $=$ sequence of amino-acids;
bonds = peptide (covalent $-\mathrm{H}_{2} \mathrm{O}$)
Secondary $\left(2^{\circ}\right)$ structure $=$ folding $(\alpha$-helix, β-pleated sheet $)$; bonds $=\mathrm{H}$-bonds (many)
Tertiary $\left(3^{\circ}\right)$ structure $=$ final folding to form active site; bonds $=\mathrm{H}$ and disulphide bridges
Quaternary (4°) structure - found only in haemoglobin; bonds = weak ionic/Van der Waals forces
Denatured when H-bonds break $-\uparrow \mathrm{pH}$ (reversible); temperatures $>60^{\circ} \mathrm{C}$ (irreversible).
Testing: add Biuret reagent to solution of protein; pale blue \rightarrow lilac NB no heat!
Uses: enzymes; buffers $\mathbf{p H}$; movement; transport; reproduction; hormones; structural etc

General

Joining molecules $=$ anabolism $=$ condensation reactions $\left(-\mathrm{H}_{2} \mathrm{O}\right)$
Breaking molecules $=$ catabolism $=$ hydrolysis reactions $\left(+\mathrm{H}_{2} \mathrm{O}\right)$

