

Carbohydrates C_n(H₂O_n)

Sugars:

Uses – energy (respiration). Learn to draw diagram (right) **Monosaccharides:** 3C = triose; 5C = pentose; 6C = hexose5-carbon: deoxyribose (DNA), ribose (RNA, ATP) н **6-carbon:** $(C_6H_{12}O_6) - \alpha$ -glucose (G); β -glucose; fructose (F) **Testing:** Benedicts; Boil; Blue \rightarrow Brick red; ct-D-glucose Joined together with glycosidic bonds (condensation -H₂O) **Disaccharides:** $(C_{12}H_{22}O_{11})$ – maltose (2 x G); sucrose (G + F) – the only non-reducing sugar **Testing:** – Boil HCl, add NaOH, then Benedicts; Boil; Blue \rightarrow Brick red (as above) **Polysaccharides:** Starch (plants only) = $\frac{1}{3}$ amylose (1:4 α glucose chain); $\frac{2}{3}$ amylopectin (1:4 α and 1:6 α bonds, so branched) **Testing:** – add I_2/KI <u>solution</u>; yellow/orange \rightarrow blue-black Glycogen animals, fungi, bacteria: (1:4 α and 1:6 α bonds, so branched) Uses: energy store – because: not soluble, so no effect on water potential(ψ); not washed away Compact, lots of energy stored, branched, so easily broken down Cellulose (plants only)1:4 β-glucose chain (X-linked by H-bonds) **Uses:** plant cell wall (support) – because: strong in tension, not easily digested (roughage)

Triglycerides (Lipids) C_nH_{2n}O₆

Structure: 1 x glycerol + 3 x fatty acids, joined by 3x ester bonds ($-3x H_2O$) Uses – energy store, insulation, waterproofing, membranes Contains little oxygen, so rich in energy; hydrophobic; NOT a polymer Can be **saturated** (all C-C bonds e.g. animal fats) Or **unsaturated** (includes some C=C bonds, e.g. olive oil, cholesterol) **Phospholipids (polar)** - with PO_4 – form bilayers in **fluid mosaic** membranes Phosphate head is hydrophyllic; 2 x fatty acid tails are hydrophobic Testing: shake with warm ethanol; pour into cold water – forms WHITE emulsion

Proteins (CNON+S - in 2 amino-acids ONLY)

Proteins are polymers made of amino-acids (20 different e.g. alanine). Differ only in R-groups.

Joined by **peptide bonds** = CONH ($-H_2O$) on ribosomes (70s Prokaryotes, 80s Eukaryotes).

Forms dipeptides; polypeptides; active form = proteins R₂ **Primary** (1°) structure = sequence of amino-acids; Amino acid 2 Amino acid 1 bonds = **peptide** (covalent $-H_2O$) **Secondary** (2^o) structure = folding (α -helix, β -pleated sheet); bonds = H-bonds (many)**Tertiary** (3°) structure = final folding to form active site; bonds = H and disulphide bridges Peptide bond

Quaternary (4[°]) structure – found only in haemoglobin; bonds = weak ionic/Van der Waals forces **Denatured** when H-bonds break - \uparrow pH (reversible); temperatures >60°C (irreversible). Testing: add Biuret reagent to solution of protein; pale blue \rightarrow lilac NB no heat! Uses: enzymes; buffers pH; movement; transport; reproduction; hormones; structural etc

General

Joining molecules = anabolism = condensation reactions $(-H_2O)$ **Breaking molecules** = catabolism = hydrolysis reactions $(+ H_2O)$

