

Food is a good source of one or more of the following: protein, carbohydrate or lipid. Living organisms need food for energy, growth, repair, defence and reproduction.

Metabolism

- **Anabolism**: the formation of large, complex molecules by linking smaller, simpler molecules *(condensation reactions form water).*
- **Catabolism**: the breakdown of large, complex molecules into smaller molecules (*hydrolysis reactions add water*).
 - Anabolic reactions require energy input (= *endothermic need ATP*)
 - Catabolic reactions release energy (= *exothermic*).
- **Metabolism** is the full set of chemical processes carried out by a living organism *(i.e. anabolism + catabolism)*.

Water:

Importance of Water for Organisms

- Fluid component: 90% of cytoplasm, 92% of blood plasma, 97% of tissue fluid and lymph.
- Multipurpose solvent: medium for metabolism and transport.
- Takes part in metabolic reactions
 - Photosynthesis: water is a raw material in the light stage.
 - Respiration: aerobic respiration produces water.
 - Anabolism: produced when macromolecules are made (condensation).
 - Catabolism: water is used to break the bonds in macromolecules (hydrolysis).
 - Movement of materials through cell membranes: diffusion, osmosis and active transport.
- Turgor plays an important role in the support of plants.
- Good absorber of heat
 - Water is a temperature-stable medium which is important for homeostasis.
 - Vaporisation of water is an excellent cooling mechanism.

Carbohydrates [General formula C(H₂O)_n]

- Elements: CHO (only).
- **Monosaccharides**: single sugar unit (glucose, fructose, galactose)
 - o Pentoses: $C_5H_{10}O_5$ Deoxyribose (DNA) and Ribose (RNA & ATP)
 - o Hexoses: $C_6H_{12}O_6$ Glucose, Fructose, Galactose
 - ο *N.B. Be* <u>sure</u> you can draw both α and β glucose!
- **Disaccharides**: double sugars i.e. two sugar units linked together
- (condensation forming water e.g. *maltose, sucrose, lactose*)
 - Maltose: glucose + glucose intermediate between glucose and starch (*N.B. draw!*)
 - o Sucrose: glucose + fructose transported in the phloem of plants
 - Lactose: glucose + galactose the sugar present in milk

Polysaccharides: multisugars — the three examples are 'polyglucoses'

- o Starch: plant glucose reserve
 - made of $\frac{1}{3}$ amylose (1:4 α glycosidic bonds only)
 - and $\frac{2}{3}$ amylopectin (1:4 & 1:6 α glycosidic bonds
 - **Glycogen**: glucose reserve of animals (*liver and muscle*) and fungi. Similar to **amylopectin**
- **Cellulose**: plant cells walls (= fibre in our diet)
 - Made of 1:4 β glycosidic bonds only

Structural Role of Carbohydrates

- Cellulose walls of plant cells.
- Chitin in the cell walls of fungi.

Metabolic Role of Carbohydrate

- Energy source: energy released by the respiration of glucose is used to make ATP.
- Energy storage: starch in plants, glycogen in animals and fungi.

Protein

- Elements: C, H, O, N and S in all proteins. N.B. Only 2 (of 20) amino-acids contain S.
- Monomer: Amino acids are the subunits that are linked by peptide bonds (*primary structure*)
- **20 different** amino acids each different sequence of amino acids produces a different protein (*controlled by DNA and mRNA*).
- Each protein has a specific functional shape (N.B. *active site/enzyme-substrate complexes*).
 - **Primary structure** the amino-acid sequence (peptide bonds)
 - Secondary structure (α -helix and β -pleated sheet).
 - Caused by H-bonds (pH!)
 - Tertiary structure the folds making the active site.
 - Caused by H-bonds and disulphide bridges.
 - Affected by heat ($\geq 60^{\circ}$ C) and pH **denaturing**.
- **Protein synthesis** takes place on the ribosomes (70s and 80s) on the rough e.r.

Structural Role of Protein

- Keratin: in hair and outer layer of the skin.
- Myosin: major protein in skeletal and cardiac muscle.

Metabolic Role of Protein

- Many proteins **function as enzymes** (specific biological catalysts).
 - 'active site' tertiary structure (affected by pH, high temps)
 - 'Enzyme-substrate complex'
- Carrier proteins in membranes (70%) ('facilitated diffusion' and 'active transport')
- Some proteins function as hormones (insulin).

A theoretical amino acid

Triglycerides (Lipids)

- Elements: CHO with more H but less O than carbohydrates.
- Composed of glycerol with 3 x fatty acids ester-bonded to the glycerol.
 - Oil lipid that is liquid at room temperature. 0
 - Fat solid lipid at room temperature. 0
 - Wax solid at 100°C 0
- Phospholipid: two fatty acids and a phosphate group linked to the glycerol. Forms phospholipid bilayer in membranes

Structural Role of Lipid

- Phospholipids are very important in cell membrane structure.
- The protective wax cuticle on the outside of leaves.

Metabolic Role of Lipids

- Energy storage: more than twice the energy of carbohydrate or protein.
- Energy source: released during respiration.
- Some lipids function as hormones (*sex hormones oestrogen, progesterone, testosterone*)

Food Tests

Starch

- Yellow-brown iodine solution is placed on the food sample.
- A blue-black colour indicates that starch is present.
- A yellow-brown colour indicates that starch is not present.

Sugars

Reducing sugars e.g. all but sucrose.

- Add an equal volume of blue Benedict's Reagent to the food solution.
- Heat (Boil). •
- The Blue Benedicts reagent becomes Brick-red, if reducing sugar present. •

Non-Reducing Sugar N.B. Only for sucrose.

- Add an equal volume of blue **B**enedict's Reagent to the food solution. •
- Add a few drops of dil. HCl •
- Neutralise with dil. NaOH solution
- Heat (Boil).
- The <u>Blue Benedicts solution becomes</u> <u>Brick-red</u>, if non-reducing sugar present

Lipid

- Shake the food with ethanol and/or warm gently
- Pour into cold water
- A CLOUDY-WHITE EMULSION forms if lipid is present.

Protein

- **Biuret Test:** Add **Biuret** solution to the food solution (N.B. must be a solution of food).
- Shake gently.
- A lilac colour (from pale blue) indicates protein is present.
- N.B. NO HEAT

Tail

surroundings.

A Micelle, with polar heads facing outward into the aqueous medium Polar head of molecule represented by : ()

together away from aqueous

© IHW March 2005